THE GENERAL PRINCIPLES OF WASTE PROCESSING WITH RECOVERY OF THEIR ENERGY POTENTIAL ON THE BASIS OF PLASMA TECHNOLOGIES. PART III. COMPARATIVE ANALYSIS OF THE OXYGEN AND AIR BLOWING INFLUENCE AND THE ROLE OF CALORIFIC CONTENT OF SEWAGE SLUDGE

  • V.A. Zhovtyansky The Gas Institute of National Academy of Sciences of Ukraine, Kyiv
  • E.P. Kolesnikova National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv
  • M.V. Yakymovych The Gas Institute of National Academy of Sciences of Ukraine, Kyiv
  • P.A. Seredenko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv
Keywords: hazardous waste, processing, plasma technologies, synthesis gas, sewage sludge of wastewater treatment plants, calorific value, enthalpy, oxygen and air blowing, energy efficiency

Abstract

The issues of determination calorific value as well as the enthalpy of formation of sewage sludge are deeply analyzed further to previous publications. Taking into account this analysis, the indicators, the indicators of the efficiency of the sewage sludge gasification process have been clarified and a comparison of the plasma-steam-oxygen and plasmasteamair gasification technologies has been made. At the same time, on the basis of previous studies, the influence on the efficiency indices of not only ballast nitrogen, but also nitrogen oxides is analyzed. Their concentrations cannot be determined on the basis of simple thermodynamic ratios. Bibl 38, Fig. 6, Tab. 1.

Author Biographies

V.A. Zhovtyansky, The Gas Institute of National Academy of Sciences of Ukraine, Kyiv

Corr. Member of the National Academy of Sciences of Ukraine, Doctor of Physical and Mathematical Sciences, Professor

M.V. Yakymovych, The Gas Institute of National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

References

Zhovtyansky V.A., Kolesnikova E.P., Yakimovich M.V., Seredenko P.A. [Comparative analysis of the effectiveness of plasma technologies for the gasification of hazardous waste]. [Proceedings of the 9th International Symposium «Combustion and Plasma Chemistry»] (Almaty, Kazakhstan, Sept. 13–15, 2017). Almaty : Kazakh University, 2017. pp. 18–21. (Rus.

Zhovtyansky V.A., Orlyk V.N., Petrov S.V., Iakymovych M.V. [The General Principles of Waste Processing with Recovery of their Energy Potential on the Basis of Plasma Technologies. Part I. Environmental Requirements, the Thermodynamics of the Process and its Energy Efficiency]. Energotehnologii i resursosberezhenie [Energy Technologies and Resource Saving]. 2015. No. 4. pp. 24–42. (Rus.)

Zhovtyansky V.A., Orlyk V.N., Petrov S.V., Iakymovych M.V. [The General Principles of Waste Processing with Recovery of their Energy Potential on the Basis of Plasma Technologies. Part IІ. Gasification of the sewage sludge of wastewater treatment plants]. Energotehnologii i resursosberezhenie [Energy Technologies and Resource Saving]. 2016. No. 3. pp. 25–46. (Rus.

Ravich M.B. [Efficiency of fuel use]. Moscow : Nauka, 1977. pp. 258. (Rus.)

Niessen W.R. Combustion and Incineration Processes, 3rd Edition, Marcel Dekker Inc., New York. 2002. 708 р.

Channiwala S.A., Parikh P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002. 81. pp. 1051–1063.

Mason D.M. & Gandhi K. Formulas for calculating the heating value of coal and coal char: development, tests and uses. ACS Division of Fuel Chemistry, Preprints. 1980. 25 (3). pp. 235–245.

Francis H.E. and Lloyd W.G. Predicting Heating Value from Elemental Composition, Journal of Coal Quality. 1983. 2 (2). pp. 21–25.

Cordero T., Marquez F., Rodriguez-Mirasol J., Rodriguez J.J. Predicting heating value of lignocellulosics and carbonaceous materials from proximate analysis. Fuel. 20001. 80 (11). pp. 1567–1571.

Thipkhunthod P., Meeyoo V., Rangsunvigit P., Kitiyanan B., Siemanond K. and Rirksomboon T. Sewage Sludge Heating Value Prediction through Proximate and Ultimate Analyses. Asian Journal on Energy and Environment. 2006. 7 (2). pp. 324–335.

Parikh J., Channiwala S.A., Ghosal G.K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel. 2007. 86. pp. 1710–1719.

Ziatdinova D.F., Kuzmin I.A., Sadriddinov A.R., Timerbaev N.F. [Investigation of the dependence of the heating value of solid domestic waste (MSW) on their morphological composition]. Izv. vuzov. Khimiya i khim. tekhnologii [News of universities. Chemistry and Chemistry. Technologies]. 2008. 51 (10). pp. 79–81. (Rus.) 13. Shen J.S., Zhu S., Liu X., Zhang H., Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management. 2010. 51. pp. 983–987.

Erol M., Haykiri-Acma H., Kucukbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy. 2010. 35. pp. 170–173.

Yin C.Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 2011. 90. pp. 1128–1132.

Nhuchhen D.R., Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis : A new approach. Fuel. 2012. 99. pp. 55–63.

Fedorova N.I., Mikhailova E.S., Ismagilov Z.R. [Dependence of the heat of combustion of coals on their chemical composition]. Khimiya v interesakh ustoychivogo razvitiya [Chemistry in the interests of sustainable development]. 2015. 23. Iss. 2. pp. 135–138. (Rus.)

Ozyuguran A., Yaman S. Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia. 2017. 107. pp. 130–136.

McAllister, S., Chen, J.Y., Fernandez-Pello, A.C. Fundamentals of combustion processes (mechanical engineering series), Springer Science and Business Media. 2011. doi 10.1007/978-1-4419- 7943-8_2

Sahu Y.K., Sahu P.K., Chakradhari S. and Patel K.S. (2016) Combustion Characteristics of Sewage Sludge and Algae. Natural Resources. 2016. 7. pp. 205–213. — http://dx.doi.org/10.4236/nr. 2016.7401

Zakaria M.S., Suhaimi Hassan and Faizairi M., Nor M. Calorific value of the sewage sludge in the thermal dryer. ARPN Journal of Engineering and Applied Sciences. 2015. 10 (21). pp. 10245–10248. — http://large.stanford.edu/courses/2017/ph240 /huang1/docs/zakaria.pdf

Flaga A. The aspects of sludge thermal utilization. pp. 9–18. — https://www.kth.se/polopoly_fs /1.650658!/JPS11p9.pdf

Bouabid G., Wassate B., Touaj K., Nahya D., El Falaki K., Azzi M. Effluents treatment plants sludge characterization in order to be used as solid fuels. J. Mater. Environ. Sci. 2014. 5 (5). pp. 1583–1590. — https://www.jmaterenvironsci. com /Document /vol5/vol5_N5/194-JMES-963- 2014-Bouabid.pdf

Kim Y.J., Kang H.O., Qureshi T.I. Heating Value Characteristics of Sewage Sludge : A Comparative Study of Different Sludge Types. J. of the Chemical Society of Pakistan. 2005. 27 (2). P. 124–129.

Lechtenberg D. Dried sewage sludge as an alternative fuel. Global Cement Magazine. 2011. pp. 36–37. — http://lechtenberg-partner.de/html/201104_Glob Cem_Dried_Sewage_Sludge_ as_AF.pdf

Energy information and date. Pyromex waste to energy. 2007. p. 11. — http://www.sludge- facts. org/Ref87_2.pdf

Zhovtyansky V.A., Kolesnikova E.P., Yakimovich M.V., Seredenko P.A. [Hazardous Waste as a Renewable Energy Source: Comparative Analysis of the Efficiency of Plasma Gasification Technologies]. Materials of the 16th Intern. Sci.-Techn. Conf. «Improvement of power systems by methods of mathematical and physical modeling» (Kharkov, Ukraine, Sept. 11–15, 2017). Kharkiv : IPMash, 2017. pp.51–53. (Ukr.) — http://ipmach.kharkov. ua/downloads/conferences/WL2017-section-1.pdf

Arsentiev I.V., Starik A.M., Zhovtyansky V.A. and Honcharuk Yu.A. Nonequilibrium processes of nitric oxides formation in plasma-assisted waste gasification: modeling study. Advanses in Nonequilibrium Processes: Plasma, Combustion, and Atmosphere. Ed. A.M.Starik and S.M.Frolov. Moscow : Torus Press, 2014. pp. 27–33.

Zel’dovich Ya.B., Raiser Yu.P. [Physics of shock waves and high-temperature hydrodynamic phenomena]. Moscow : Nauka, 1966. 688 p. (Rus.)

Zel’dovich Ya.B., Sadovnikov P.Ya., Frank-Kamenetsky D.A. [Oxidation of nitrogen during combustion]. Moscow; Leningrad : Izdatelstvo AN USSR, 1947. 147 p. (Rus.)

Brage C., Qizhuang U., Sjostrom K. Use of amino phase adsorbent for biomass tar sampling and separation. Fuel. 1997. 76 (2). pp. 137–142.

DSP-201-97. State sanitary rules for the protection of atmospheric air of populated areas (from pollution by chemical and biological substances). Approved by the order of the Ministry of Health of Ukraine of July 9, 1997. No. 201. (Ukr.)

Zhovtyansky V.А., Petrov S.V., Kolesnyk V.V., Orlyk V.M., Nevzglyad I.О., Goncharuk Yu.A., and Yakymovych M.V. [Conversion of carbonaceous raw materials using plasma technology]. Energotehnologii i resursosberezhenie [Energy Technologies and Resource Saving]. 2012. No. 5. pp. 15–32. (Rus.)

Zhovtyansky V.A., Petrov S.V., Lelyukh Yu.I., Nevzglyad I.O., Goncharuk Yu.A. [Efficiency of Renewable Organic Raw Materials Conversion Using Plasma Technology]. IEEE Trans. Plasma Sci. 2013. 41 (12). pp. 3233–3239.

Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration waste. Official Journal of the European Communities L 332, 28/12/2000. pp. 91–111.

Dautov N.G., Starik A.M. On the choice of kinetics cheme in description of volume reaction of methane and air. Kinet. Catal. 1997. 38. pp. 168–172.

Ducharne C. Technical and economic analysis of Plasma-assisted Waste-to-Energy processes, Earth Engineering Centre: Columbia University. 2010. 50 p.

Pat. 98271 UA, МКP Н 05 Н 1/24. [Arc plasma torc]. S.V.Petrov, S.G.Bondarenko, V.A.Zhovtyansky, V.M.Korzhyk, V.V.Popov. Publ. 25.04.2012. (Ukr.)

Published
2018-06-25
How to Cite
Zhovtyansky, V., Kolesnikova, E., Yakymovych, M., & Seredenko, P. (2018). THE GENERAL PRINCIPLES OF WASTE PROCESSING WITH RECOVERY OF THEIR ENERGY POTENTIAL ON THE BASIS OF PLASMA TECHNOLOGIES. PART III. COMPARATIVE ANALYSIS OF THE OXYGEN AND AIR BLOWING INFLUENCE AND THE ROLE OF CALORIFIC CONTENT OF SEWAGE SLUDGE. Energy Technologies & Resource Saving, (2), 16-30. https://doi.org/10.33070/etars.2.2018.03
Section
Energy saving technologies